Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 35(8): e21763, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34245609

RESUMO

The synaptic expression of glutamate receptors of the α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) type is dynamically controlled by interaction with binding partners and auxiliary proteins. These proteins can be regulated by posttranslational modifications, including ubiquitination. In this work, we investigated the regulation of glutamate receptor interacting protein-associated protein 1 (GRASP1) by ubiquitin-dependent mechanisms and its impact on surface expression and activity of synaptic AMPA receptors. Cotransfection of GFP-ubiquitin decreased myc-GRASP1 protein levels in HEK293T cells, and this effect was inhibited upon transfection of an ubiquitin mutant that cannot be ubiquitinated on Lys48. In addition, transfection of cultured hippocampal neurons with GFP-ubiquitin reduced the dendritic levels of endogenous GRASP1 and decreased the surface expression of GluA1 AMPA receptor subunits, an effect that was partly reversed by cotransfection with GRASP1. Similarly, transfection of hippocampal neurons with GFP-ubiquitin decreased the amplitude of miniature excitatory postsynaptic currents (mEPSCs) mediated by Ca2+ -impermeable AMPA receptors, and this effect was abrogated by cotransfection of GRASP1. Together, the results show a role for ubiquitination in the regulation of the postsynaptic protein GRASP1, which has an impact on the surface distribution of AMPA receptors and on their activity at the synapse.


Assuntos
Sinalização do Cálcio , Regulação da Expressão Gênica , Proteínas da Matriz do Complexo de Golgi/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Receptores de AMPA/biossíntese , Ubiquitinação , Animais , Proteínas da Matriz do Complexo de Golgi/genética , Células HEK293 , Humanos , Ratos , Receptores de AMPA/genética
2.
Sci Rep ; 11(1): 11374, 2021 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-34059735

RESUMO

Cell culture models are important tools to study epileptogenesis mechanisms. The aim of this work was to characterize the spontaneous and synchronized rhythmic activity developed by cultured hippocampal neurons after transient incubation in zero Mg2+ to model Status Epilepticus. Cultured hippocampal neurons were transiently incubated with a Mg2+-free solution and the activity of neuronal networks was evaluated using single cell calcium imaging and whole-cell current clamp recordings. Here we report the development of synchronized and spontaneous [Ca2+]i transients in cultured hippocampal neurons immediately after transient incubation in a Mg2+-free solution. Spontaneous and synchronous [Ca2+]i oscillations were observed when the cells were then incubated in the presence of Mg2+. Functional studies also showed that transient incubation in Mg2+-free medium induces neuronal rhythmic burst activity that was prevented by antagonists of glutamate receptors. In conclusion, we report the development of epileptiform-like activity, characterized by spontaneous and synchronized discharges, in cultured hippocampal neurons transiently incubated in the absence of Mg2+. This model will allow studying synaptic alterations contributing to the hyperexcitability that underlies the development of seizures and will be useful in pharmacological studies for testing new drugs for the treatment of epilepsy.


Assuntos
Epilepsia/fisiopatologia , Hipocampo/metabolismo , Magnésio/metabolismo , Neurônios/metabolismo , Animais , Cálcio/metabolismo , Células Cultivadas , Meios de Cultura , Hipocampo/citologia , Hipocampo/fisiopatologia , Técnicas de Patch-Clamp , Ratos , Ratos Wistar
3.
Sci Signal ; 12(586)2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31213568

RESUMO

The effects of brain-derived neurotrophic factor (BDNF) in long-term synaptic potentiation (LTP) are thought to underlie learning and memory formation and are partly mediated by local protein synthesis. Here, we investigated the mechanisms that mediate BDNF-induced alterations in the synaptic proteome that are coupled to synaptic strengthening. BDNF induced the synaptic accumulation of GluN2B-containing NMDA receptors (NMDARs) and increased the amplitude of NMDAR-mediated miniature excitatory postsynaptic currents (mEPSCs) in cultured rat hippocampal neurons by a mechanism requiring activation of the protein tyrosine kinase Pyk2 and dependent on cellular protein synthesis. Single-particle tracking using quantum dot imaging revealed that the increase in the abundance of synaptic NMDAR currents correlated with their enhanced stability in the synaptic compartment. Furthermore, BDNF increased the local synthesis of Pyk2 at the synapse, and the observed increase in Pyk2 protein abundance along dendrites of cultured hippocampal neurons was mediated by a mechanism dependent on the ribonucleoprotein hnRNP K, which bound to Pyk2 mRNA and dissociated from it upon BDNF application. Knocking down hnRNP K reduced the BDNF-induced synaptic synthesis of Pyk2 protein, whereas its overexpression enhanced it. Together, these findings indicate that hnRNP K mediates the synaptic distribution of Pyk2 synthesis, and hence the synaptic incorporation of GluN2B-containing NMDARs, induced by BDNF, which may affect LTP and synaptic plasticity.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/farmacologia , Dendritos/metabolismo , Potenciais Pós-Sinápticos Excitadores , Quinase 2 de Adesão Focal/metabolismo , Hipocampo/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo , Animais , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Hipocampo/citologia , Pontos Quânticos , Ratos , Ratos Wistar
4.
eNeuro ; 4(6)2017.
Artigo em Inglês | MEDLINE | ID: mdl-29255796

RESUMO

Brain-derived neurotrophic factor (BDNF) is an important mediator of long-term synaptic potentiation (LTP) in the hippocampus. The local effects of BDNF depend on the activation of translation activity, which requires the delivery of transcripts to the synapse. In this work, we found that neuronal activity regulates the dendritic localization of the RNA-binding protein heterogeneous nuclear ribonucleoprotein K (hnRNP K) in cultured rat hippocampal neurons by stimulating BDNF-Trk signaling. Microarray experiments identified a large number of transcripts that are coimmunoprecipitated with hnRNP K, and about 60% of these transcripts are dissociated from the protein upon stimulation of rat hippocampal neurons with BDNF. In vivo studies also showed a role for TrkB signaling in the dissociation of transcripts from hnRNP K upon high-frequency stimulation (HFS) of medial perforant path-granule cell synapses of male rat dentate gyrus (DG). Furthermore, treatment of rat hippocampal synaptoneurosomes with BDNF decreased the coimmunoprecipitation of hnRNP K with mRNAs coding for glutamate receptor subunits, Ca2+- and calmodulin-dependent protein kinase IIß (CaMKIIß) and BDNF. Downregulation of hnRNP K impaired the BDNF-induced enhancement of NMDA receptor (NMDAR)-mediated mEPSC, and similar results were obtained upon inhibition of protein synthesis with cycloheximide. The results demonstrate that BDNF regulates specific populations of hnRNP-associated mRNAs in neuronal dendrites and suggests an important role of hnRNP K in BDNF-dependent forms of synaptic plasticity.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Dendritos/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Hipocampo/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo , Animais , Animais não Endogâmicos , Células Cultivadas , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Células HEK293 , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/genética , Hipocampo/citologia , Humanos , Masculino , Análise em Microsséries , Microeletrodos , Transporte de RNA/fisiologia , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Ratos Wistar , Sinaptossomos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...